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ABSTRACT

A dynamic finite element code was used in its "propagation mode" to
assess the differences in dynamic crack propagation in a wedge-loaded (WL)
single-edged notch (SEN) specimen, a tapered double cantilever beam (TDCB)
specimen and a rectangular double cantilever beam (RDCB) specimen. The
dynamic fracture toughness, KID’ versus the crack velocity, a, relations
determined experimentally for WL-SEN, WL-TDCB and WL-RDCB specimens machined
from Araldite B were used as dynamic fracture criteria and the resuitant Kip
variations with crack propagations in the three specimens were compared with
the corresponding experimental results. While the specific KID versus a
relations established for each specimen obviously yielded calculated KID which
were in best agreement with the experimental Kid,for the respective specimen,
the KID versusl;_reIation for the large WL-SEN specimen provided the best
overall fit between the calculated and measured KID variations with crack

propagation in all three specimens.
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INTRODUCTION

During the past several years, dynamic photoelasticity [1-3] and dynamic
caustic [4,5] have been used in an attempt to identify a fundamental law which
governs dynamic crack propagation in solids. These optical techniques provide
the near-field, dynamic state of stress surrounding a running crack and thus
offer means of extracting the dynamic stress intensity factor associated with
this stress field. Although most of these investigations have been confined
to the studies of dynamic responses in polymers, birefringent coating technique
[6] and reflection caustic [5] are being used to extend these optical techniques
for studying dynamic fracture of metals. A1l investigations using these optical
techniques, however, have been confined to the dynamic analyses of fracture
specimens of specific geometries. It is interesting to note that the University
of Maryland (UM) [1,2] group chose relatively large Homalite-100 fracture
specimens in comparison to the smaller Homalite-100 specimens used at the
University of Washington (UW) [3] and the group at the Institut fiur FestkSrper-
mechanik (IFKM) [4, 5] used medium and small size Araldite B specimens. The
resultant dynamic stress fracture toughness, KID’ versus crack velocity relation,
a, obtained by the UM group showed that the KID versus a relation for Homalite-
100 to be essentially independent of specimen configurations. The UW and IFKM
results in Homalite-100 and Araldite B, respectively, on the other hand, showed
KID versus a relation to be somewhat dependent on specimen geometry.

These differences, which admittedly are not excessive, in KID versus a
relations pose a fundamental question as to whether dynamic crack propagation
is solely governed by the current state of crack tip stresses, which are

characterized by the dynamic fracture toughness of KID' or whether it should
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carry the influence of past propagation history such as the rate of change of

dynamic fracture toughness, KID’ The latter obviously would not allow KID

versus a to be a unique material property. In spite of this controversy, past

numerical analysis [7] has indicated that perhaps variations in the KID versus

a relation do not substantially affect thg~tota1 dynamic motion leading the
authors to question the sensitivity of the calculated dynamic crack propagation
to the specific K;p versus a relation used.

t | The authors thus undertook a sensitivity study using the IFKM test results
which included smaller fracture specimens machined from previously fractured
larger specimens and which reduced the material variability in establishing

KID versus a relations for the various fracture specimens. In the following

some of the salient features of this study are reported.

DYNAMIC FRACTURE ANALYSIS

The recent revisions made in the authors' previously updated dynamic
finite element code [8] are discussed in detail in Reference [9]. Briefly,
the most recent improvements include a better controlled numerical algorithm
prescribing nodal force at the crack tip node during crack extension in the
explicit dynamic finite element code of HONDO [10]. Fracture energy was

computed from the dissipated energy using the force and displacement at the

nodal point being released. The dynamic stress intensity factor was then
computed from the fracture energy using Freund's relation [11]. The improved
dynamic fracture mechanics code was first used in its "propagation" and then

in its "generation" modes, as designated by Kanninen [12], of crack propagation

in order to verify the internal consistency of the total fracture mechanics

package.
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The improved code was then used both in its propagation and generation

modes to analyze two fracturing wedge-loaded, rectangular double cantilever
beam (WL-RDCB) specimen tested by Kalthoff et al. [13]. Negligible differences
between the two numerical KID throughout the fracture process obtained through
the propagation and generation modes proved the sought internal consistency of
the code. Good agreement between the numerically and experimentally determined
KID further showed the validity of the dynamic fracture model used. It was
also shown that when the generation mode is used in conjunction with the
measured crack position versus time data, experimental errors in the latter
could grossly distort the computed KID values. The inevitable limitation in
crack position measurements was overcome by using the smoothed crack position
versus time as well as an associated smoothed crack velocity relation as input
data in the generation calculations.

The above studies also showed that the propagation calculation resulted
in less oscillations in the calculated KID but the calculated and measured crack
lengths at crack arrest were not always in complete agreement. This sensitivity
of the arrest crack length to input KID versus a relation in the propagation

calculation made it ideal for the sensitivity study reported in this paper.

FRACTURE SPECIMENS AND MATERIAL DATA

The three specimens which were analyzed by the dynamic finite element
code are the wedge-loaded (WL) single-edge notched (SEN) specimen, rectangular
double cantilever beam (RDCB) specimen and tapered double cantilever beam
(TDCB) specimen which were machined from a 10 mm thick Araldite B and analyzed
with dynamic caustics by Kalthoff et al. [4,5]. The specimen geometries are
given in Figure 1 and a typical finite element breakdown of the WL-SEN specimen

is given in Figure 2. The finite element breakdown used for the WL-RDCB and




WL-TDCB specimens are similar to those used in Reference [9] with an obvious
reduction in scale.

Extensive experimental investigation by Hahn et al. [7] has shown that
the wedge-loaded pins could leave the wedge and travel outwards in the steel
specimens. When such pin motion is accounted for in KID computation, an
attendant increase in the KID during crack propagation was observed [14].

The additional input energy due to any possible separation of the steel loading
pins from the steel wedge should be considerably smaller due to the smaller

mass density and the two orders of magnitude larger compliance of the Araldite B
specimens in comparison to the steel specimen studied in Reference [14]. Thus
the possible loading pin motion was ignored and constant displacements were
prescribed at the pin holes in the dynamic finite element analysis.

Material constants of Araldite B used for this analysis are modulus of
elasticity E = 3.38 GPa, Poisson ratio of v = 0.33 and mass density, p = 1047 kg/m’.
Dynamic fracture toughness KID’ versus crack velocity, 5, relations shown in
Figure 3, are based on the experimental data from Ref. [15].

Since the dynamic crack initiation stress intensity factors, KIQ’ were not
reported in Reference [15] for any of the three specimens, KIQS were either
back-calculated by static analysis using the estimated mean values of oscillating

K D values for the WL-RDCB and WL-TDCB specimens or estimated for the WL-SEN

I
specimen. Given the KIQ value and one of the three KID versus a relations,

the crack was propagated dynamically in the WL-SEN, WL-TDCB and WL-RDCB specimens

using the improved fracture dynamic code.




RESULTS

WL-SEN Specimen

The first numerical analysis involved a propagation analysis of the WL-SEN

specimen of Figure 1 using three K., versus a relations of Figure 3 and a

ID
Q- 1.08 MPa v/m. The resultant KI

calculation are shown in Figures 4 and 5, respectively. Significant differences

KI 0 crack tip motion of this propagation
are noted especially in the second two thirds of crack propagation prior to
crack arrest, where the two curves obtained by using the KID versus a relations
for the WL-TDCB and WL-RDCB specimens grossly underestimate by more than a
factor of two the total jump distance at crack arrest.

Figure 5 shows that the computed crack propagation time using the KID
versus a relation is about one half and two thirds, respectively, of the
actual propagation time. The underestimation in computed crack arrest length
and time using the KID versus a relations of the WL-TDCB and WL-RDCB is due to
the fact that the propagation calculation is terminated when the computed dynamic
stress intensity factor falls below the minimum KID values in Figure 3 thus in-
dicating the extreme sensitivity of these values to the seemingly small shifts

in the minimum KID'

WL-TDCB Specimen

Figure 6 shows the K pasa function of a of a WL-TDCB specimen again

using the three KID versui a relations of Figure 3 and KIQ = 2.08 MPa vm.

The pronounced second maximum in KID seen in the WL-SEN specimen as well as

in the previously analyzed large WL-RDCB specimen [9], is considerably smaller
in the current WL-TDCB specimen. The computed jump distances at crack arrest

obtained by the use of the three K,. versus a relations are in reasonable

ID
agreement with experimental results. Although not obvious from Figure 6,




the computed KID increased again after the initial crack arrest to a value
approaching the measured KID at crack arrest if a slow crack propagation was
prescribed just after the arrest.

Figure 7 shows the KID versus time relation for a WL-TDCB specimen using
the three KID versus a relations. Although the three calculated KID are in
excellent agreement with each other, the calculated crack arrest times are
considerably smaller than that found experimentally.

Figure 8 shows the computed KID for a WL-RDCB specimen using the three
KID versus a relations and a KIQ = 2.0 MPa /m . Note that the crack length
at crack arrest obtained by using the KID versus a relations for large WL-SEN
and small WL-TDCB specimens are approximately 5% larger and smaller, respectively,
than the measured crack length at crack arrest. Interestingly enough, all the

three calculations underpredict the time to crack arrest as shown by Figure 9.

CONCLUSIONS

Propagation studies of three Araldite B dynamic fracture specimens, i.e.
WL-SEN, WL-TDCB and WL-RDCB, using the individually generated KID versus a
relations showed that best agreement between calculated and measured KID values
can be obtained, as expected when the respective KID versus a relation is used
in analyzing each specimen.

Calculated crack arrest length and crack arrest time for a WL-SEN specimen
with small variations in KID are sensitive to the slight shift in the minimum
dynamic stress intensity factor, KIm’ in the KID versus a relation.

In this study conservative estimates of the crack arrest lengths in the
small specimens, i.e. WL-TDCB and WL-RDCB can be obtained by using the KID
versus a relation with the smallest KIm’ i.e. the relation generated by the

larger WL-SEN specimen.




DISCUSSIONS
Although only three dynamic fracture specimens were studied in this paper,
this comparative study indicates that the specimen dependent KID versus a
relation advocated by some [3,4,5] is valid. If such is the case, the results
also imply that dynamic propagation of a crack is not controlled solely by the
instantaneous dynamic state surrounding a running crack and that further
fundamental investigation on the law(s) governing dynamic crack propagation is
necessary. Crack propagation in the presence of severe dynamic loadings, such
as impact loading of a small fracture specimen [6,7] could accentuate such
dynamic conditions and thus warrants further investigation.
In the interim, however, conservative estimates of the dynamic crack
propagation response and the crack length at crack arrest can be made by using
the minimum KID at the knee and a maximum KID at the shelf of a KID versus a

relation which in this study happens to be that extablished for large WL-SEN.
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